Powered By Blogger

lunes, 26 de enero de 2015

CARDANO

Vida

Gerolamo Cardano, o Girolamo Cardano (24 de septiembre de 1501 - 21 de septiembre de 1576) fue un médico notable, además de un célebre matemático italiano del Renacimiento, un astrólogo de valía, y un estudioso del azar. Este filósofo y destacado enciclopedista, fue autor de una de las primeras autobiografías modernas.
Nacido en Pavía, Italia, Gerolamo Cardano era hijo ilegítimo de Fazio Cardano, un abogado con talento para las matemáticas que fue amigo de Leonardo Da Vinci. En 1520, entró en la Universidad de Pavía y estudió medicina en Padua consiguiendo excelentes calificaciones. Finalmente, obtuvo una considerable reputación como médico en Saccolongo (cerca de Padua) y sus servicios fueron altamente valorados en las cortes (atendió al Papa y al arzobispo escocés de St. Andrews). No obstante los obstáculos, fue aceptado en 1539 en el Colegio Médico de Milán, llegando a la cúspide de su profesión.
En Bolonia, Cardano fue acusado de herejía en 1570 debido al tono polémico y agudo de sus escritos y a haber escrito el horóscopo de Jesús en 1554. Fue procesado, pasó varios meses en prisión, abjuró y logró la libertad pero con la prohibición de publicar. Se mudó entonces a Roma y consiguió una pensión del Papa Gregorio XIII, y allí practicó la medicina, escribió libros médicos y terminó su célebre autobiografía. Murió en Roma (una leyenda dice que en el día que él había predicho) y su cuerpo fue trasladado a Milán y enterrado en la iglesia de San Marcos.

Obras

Como médico en la medicina renacentista ha sido estudiado agudamente por N. Siraisi, en The Clock and the Mirror. Fue Cardano el primero en describir la fiebre tifoidea y sobre otros temas médicos, como comentarios a Galeno e Hipócrates. Su Contradicentium medicorum, de 1536, aborda temas de discusión en la medicina del siglo XVI. Su El libro de los sueños es la última onirocrítica de raíces antiguas (que culminó con Artemidoro en el siglo II) y medievales, pasada por el filtro crítico de los modernos, lo que lo hace un texto valiosísimo; sería citado por Freud en su Interpretación de los sueños (1900).
Hoy es conocido por sus múltiples intereses, pese a la lentitud de la recuperación en lenguas vivas (ya que escribió en latín). Son fuentes de datos las dos enciclopedias de saberes: De subtilitate rerum (1550) y De varietate rerum (1559).
En primer lugar, destaca por sus trabajos de álgebra. En 1539 publicó su libro de aritmética Practica arithmetica et mensurandi singulares. Publicó las soluciones a las ecuaciones de tercer y cuarto grado en su Ars magna datado en 1545. La solución a un caso particular de ecuación cúbica x^3+ax=b (en notación moderna), le fue comunicada a través de Niccolò Fontana (más conocido como Tartaglia) a quien Cardano había jurado no desvelar el secreto de la resolución; no obstante Cardano consideró que el juramento había expirado tras obtener información de otras fuentes por lo que polemizó con Tartaglia, a quien además cita. En realidad, el hallazgo de la solución de las ecuaciones cúbicas no se debe ni a Cardano ni a Tartaglia (había hallado una primera fórmula Scipione dal Ferro hacia 1515) y hoy se reconoce la honradez de Cardano que lo reconocía así en su libro. Una ecuación de cuarto grado fue resuelta por un discípulo de Cardano llamado Lodovico Ferrari. En su exposición, puso de manifiesto lo que hoy se conoce como números imaginarios.
Su libro sobre juegos de azar, Liber de ludo aleae, escrito en la década de 1560 pero publicado póstumamente en 1663, constituye el primer tratado serio de probabilidad abordando métodos de cierta efectividad.
Hizo Cardano contribuciones a la hidrodinámica, apoyándose en esquemas del siglo XV, y mantuvo que el movimiento perpetuo es imposible excepto en los cuerpos celestes. Publicó dos enciclopedias de ciencias naturales, Sobre la sutileza de las cosas, Sobre la variedad de las cosas, que contienen una amplia variedad de invenciones, hechos y conocimientos que hoy consideramos mágicos o supersticiosos. También introdujo la rejilla de Cardano, una herramienta criptográfica, en 1550. Asimismo desarrolló un dispositivo que permite conservar la horizontalidad mediante dos ejes que giran en ángulo, dispositivo que actualmente se usa en millones de vehículos, conocido hoy como junta o suspensión de cardano y otro para el asentamiento de las brújulas en las naves llamado gimbal.
En filosofía —que ha sido estudiado a fondo por A. Ingegno, Saggio sulla filosofia di Cardano— no sólo escribió sobre temas morales (De consolatione, De sapientia, Proxeneta), pues en De immortalitate animorum Cardanó reabrió una discusión que había tenido lugar años antes entre Pietro Pomponazzi, Agostino Nifo, Alessandro Achillini y Marcantonio Zimara, principalmente. Ellos habían discutido, en el seno de las tradiciones filosóficas de Aristóteles y Averroes, cuáles habían sido sus posturas, y qué podía decir la razón natural sobre la inmortalidad del hombre. Cardano se significó en oposición a Pietro Pomponazzi, seguidor de Alejandro de Afrodisias.
Sus dos libros biográficos, Mi vida, y Mis libros (su autobibliografía) son dos obras maestras, que hacen además un retrato excelente de lo que pudo ser un sabio, como era, del siglo XVI, y la valoración de sus libros.
Su Opera omnia se publicó en Lyon en el siglo XVII, y ha tenido una ed. facsímil en el siglo XX (hay microforma de la Univ. de Valencia. El trabajo de recuperación prosigue desde Milán en la actualidad.


Trabajado en la ESO

Las ecuaciones las llebamos trabajando desde 1 de la ESO y segimos trabajandolas.
La probabilidad la estudiamos en 3 de la ESO.

lunes, 19 de enero de 2015

FIBONACCI

Vida

Leonardo de Pisa, Leonardo Pisano o Leonardo Bigollo (c. 1170 - 1250), también llamado Fibonacci, fue un matemático italiano, famoso por haber difundido en Europa el sistema de numeración indo-arábigo actualmente utilizado, el que emplea notación posicional (de base 10, o decimal) y un dígito de valor nulo: el cero; y por idear la sucesión de Fibonacci.
El apodo de Guglielmo (Guillermo), padre de Leonardo, era Bonacci (simple o bien intencionado). Leonardo recibió póstumamente el apodo de Fibonacci (por filius Bonacci, hijo de Bonacci). Guglielmo dirigía un puesto de comercio en Bugía (según algunas versiones era el cónsul de Pisa), en el norte de África (hoy Bejaia, Argelia), y de niño Leonardo viajó allí para ayudarlo. Allí aprendió el sistema de numeración árabe.
Consciente de la superioridad de los numerales árabes, Fibonacci viajó a través de los países del Mediterráneo para estudiar con los matemáticos árabes  más destacados de ese tiempo, regresando cerca de 1200. En 1202, a los 32 años de edad, publicó lo que había aprendido en el Liber abaci (abaci en el sentido de aritmética y no del ábaco instrumento). Este libro mostró la importancia del nuevo sistema de numeración aplicándolo a la contabilidad comercial, conversión de pesos y medidas, cálculo, intereses, cambio de moneda, y otras numerosas aplicaciones. En estas páginas describe el cero, la notación posicional, la descomposición en factores primos, los criterios de divisibilidad. El libro fue recibido con entusiasmo en la Europa ilustrada, y tuvo un impacto profundo en el pensamiento matemático europeo.
Leonardo fue huésped del Emperador Federico II, que se interesaba en las matemáticas y la ciencia en general. En 1240, la República de Pisa lo honra concediéndole un salario permanente (bajo su nombre alternativo de Leonardo Bigollo).

Obras

  • Liber Abaci (Libro del Ábaco). Fue escrito en 1202 y revisado y considerablemente aumentado en 1228. Se divide en quince capítulos. Un capítulo importante está dedicado a las fracciones graduales, de las que expone las propiedades. En ellas basa una teoría de los números fraccionarios y, después de haberlas introducido en los cálculos de números abstractos, las vuelve un instrumento práctico para la obtención de números concretos. Todas las fracciones se presentan a la manera egipcia, es decir, como suma de fracciones con numeradores unitarios y denominadores no repetidos. La única excepción es la fracción \textstyle \frac{2}{3}, que no se descompone. Incluye una tabla para descomposición en fracciones unitarias que se lee derecha a izquierda, como en las lenguas semíticas.
  • Practica Geometriae. (Geometría práctica) Está dividido en siete capítulos en los que aborda problemas de geometría dimensional referente a figuras planas y sólidas. Es la obra más avanzada en su tipo que se encuentra en esa época en Occidente.
  • Flos super solutionibus quarumdam questionum ad numerum et ad geometricam pertinentium. (Ramillete de soluciones de ciertas cuestiones relativas al número y a la geometría) Comprende quince problemas de análisis determinado e indeterminado de primer grado. Dos de esos problemas habían sido propuestos como desafío a Leonardo por Juan de Palermo, matemático de la corte del emperador Federico II.
  • Carta a Teodoro. Es una simple carta que Leonardo envía a Teodoro, astrólogo de la corte de Federico II. En ella se resuelven dos problemas. El primero es algebraico y consiste en encontrar objetos de diferentes proporciones. Estos objetos llevan los nombres de pájaros de diversas especies. Paul Ver Eecke, quien tradujo el Liber Quadratorum al francés desde el original latino de la edición de 1228, opina que pudo haber sido una cortesía hacia Federico II, que era aficionado a la caza con halcón, previendo que su carta sería llevada al príncipe. El segundo problema es geométrico-algebraico. Se trata de inscribir en un triángulo isósceles un pentágono equilátero que tenga un lado sobre la base del triángulo y otros dos lados sobre los restantes de éste. Lo reduce a una ecuación de segundo grado, dando un valor muy aproximado para el lado del pentágono en el sistema sexagesimal .
  • Liber Quadratorum. (El Libro de los Números Cuadrados) Consta de veinte proposiciones. Estas no consisten en una recopilación sistemática de las propiedades de los números cuadrados, sino una selección de las propiedades que llevan a resolver un problema de análisis indeterminado de segundo grado que le fuera propuesto por Teodoro, un matemático de la corte de Federico II.

Trabajado en la ESO

En 2, 3 y 4 de la ESO hemos y seguimos trabajamos con números cuadrados, de los cuales hizo el libro Liber Quadratorum  Fibonacci
NICOLA TARTAGLIA


Vida

(Brescia, actual Italia, 1499 - Venecia, 1557) Matemático italiano. Durante la ocupación francesa de Brescia su padre fue asesinado y él mismo dado por muerto a causa de sus graves heridas, una de las cuales, un golpe de sable en la mandíbula, le provocaría un defecto en el habla que lo acompañaría toda su vida y le valdría su sobrenombre (tartaglia, esto es, tartamudo). De origen muy humilde, su familia no pudo proporcionarle ningún tipo de educación, de modo que el joven Tartaglia tuvo que aprenderlo todo por su cuenta. Ya adulto, se ganó la vida como profesor itinerante (según permiten conocer sus obras, vivió en Verona, Mantua y Venecia) y a través de su participación en concursos matemáticos. En uno de ellos se planteó la resolución de diversas ecuaciones de la forma x³ + px = q; Tartaglia consiguió averiguar la solución general y obtuvo el premio. Más adelante reveló su método a Gerolamo Cardano, bajo la firme promesa de mantener el secreto, pero éste acabó publicándolo en su Ars magna de 1545.

Trabajos

Creador de un método para resolver ecuaciones de tercer grado, estando ya en Venecia, en 1535 su colega del Fiore discípulo de Scipione del Ferro de quien había recibido la fórmula para resolver las ecuaciones cúbicas, le propone un duelo matemático que Tartaglia acepta. A partir de este duelo y en su afán de ganarlo Tartaglia desarrolla la fórmula general para resolver las ecuaciones de tercer grado. Por lo que, consigue resolver todas las cuestiones que le plantea su contrincante, sin que éste logre resolver ninguna de las propuestas por Tartaglia.
El éxito de Tartaglia en el duelo llega a oídos de Gerolamo Cardano que le ruega que le comunique su fórmula, a lo que accede pero exigiéndole a Cardano jurar que no la publicará. Sin embargo, en vista de que Tartaglia no publica su fórmula, y que según parece llega a manos de Cardano un escrito inédito de otro matemático fechado con anterioridad al de Tartaglia y en el que independiente se llega al mismo resultado, será finalmente Cardano quien, considerándose libre del juramento, la publique en su obra Ars Magna (1545). A pesar de que Cardano acreditó la autoría de Tartaglia, éste quedó profundamente afectado, llegando a insultar públicamente a Cardano tanto personal como profesionalmente. Como consecuencia de lo anterior las fórmulas de Tartaglia serán conocidas como fórmulas de Cardano.
Otras aportaciones destacables de Tartaglia fueron los primeros estudios de aplicación de las matemáticas a la artillería en el cálculo de la trayectorias de los proyectiles (trabajos confirmados posteriormente por los estudios acerca de la caída de los cuerpos realizados por Galileo), así como por la expresión matemática para el cálculo del volumen de un tetraedro cualquiera en función de las longitudes de sus lados, la llamada fórmula de Tartaglia, una generalización de la fórmula de Herón (usada para el cálculo del área del triángulo):

 V^2 = \frac{1}{288} \det \begin{bmatrix} 
  0 & d_{12}^2 & d_{13}^2 & d_{14}^2 & 1 \\
d_{21}^2 & 0   & d_{23}^2 & d_{24}^2 & 1 \\
d_{31}^2 & d_{32}^2 & 0   & d_{34}^2 & 1 \\
d_{41}^2 & d_{42}^2 & d_{43}^2 &   0 & 1 \\
  1 &   1 &   1 &   1 & 0
\end{bmatrix}  

 

Además de sus trabajos matemáticos, Tartaglia publicó las primeras traducciones al italiano de las obras de Arquímedes y Euclides.

 

       Obras:


  • Trattato di numeri et misure.
  • Nuova Scientia, cioè invenzione nuovamente trovata utile per ciascuno speculativo matematico bombardero et altri (1546).
  • Questi et invenzioni diverse.
  • La travagliata invenzione.
  • Trattato di aritmética.

Utilizado en la ESO

En primero y segundo de la Eso realizamos trabajos y ejercicios calculando el área del triángulo, el cual descubrió Tartaglia.
También en física realizamos operaciones en tercero y cuarto de la ESO relacionadas con la trayectoria de los proyectiles.