Powered By Blogger

lunes, 19 de enero de 2015

NICOLA TARTAGLIA


Vida

(Brescia, actual Italia, 1499 - Venecia, 1557) Matemático italiano. Durante la ocupación francesa de Brescia su padre fue asesinado y él mismo dado por muerto a causa de sus graves heridas, una de las cuales, un golpe de sable en la mandíbula, le provocaría un defecto en el habla que lo acompañaría toda su vida y le valdría su sobrenombre (tartaglia, esto es, tartamudo). De origen muy humilde, su familia no pudo proporcionarle ningún tipo de educación, de modo que el joven Tartaglia tuvo que aprenderlo todo por su cuenta. Ya adulto, se ganó la vida como profesor itinerante (según permiten conocer sus obras, vivió en Verona, Mantua y Venecia) y a través de su participación en concursos matemáticos. En uno de ellos se planteó la resolución de diversas ecuaciones de la forma x³ + px = q; Tartaglia consiguió averiguar la solución general y obtuvo el premio. Más adelante reveló su método a Gerolamo Cardano, bajo la firme promesa de mantener el secreto, pero éste acabó publicándolo en su Ars magna de 1545.

Trabajos

Creador de un método para resolver ecuaciones de tercer grado, estando ya en Venecia, en 1535 su colega del Fiore discípulo de Scipione del Ferro de quien había recibido la fórmula para resolver las ecuaciones cúbicas, le propone un duelo matemático que Tartaglia acepta. A partir de este duelo y en su afán de ganarlo Tartaglia desarrolla la fórmula general para resolver las ecuaciones de tercer grado. Por lo que, consigue resolver todas las cuestiones que le plantea su contrincante, sin que éste logre resolver ninguna de las propuestas por Tartaglia.
El éxito de Tartaglia en el duelo llega a oídos de Gerolamo Cardano que le ruega que le comunique su fórmula, a lo que accede pero exigiéndole a Cardano jurar que no la publicará. Sin embargo, en vista de que Tartaglia no publica su fórmula, y que según parece llega a manos de Cardano un escrito inédito de otro matemático fechado con anterioridad al de Tartaglia y en el que independiente se llega al mismo resultado, será finalmente Cardano quien, considerándose libre del juramento, la publique en su obra Ars Magna (1545). A pesar de que Cardano acreditó la autoría de Tartaglia, éste quedó profundamente afectado, llegando a insultar públicamente a Cardano tanto personal como profesionalmente. Como consecuencia de lo anterior las fórmulas de Tartaglia serán conocidas como fórmulas de Cardano.
Otras aportaciones destacables de Tartaglia fueron los primeros estudios de aplicación de las matemáticas a la artillería en el cálculo de la trayectorias de los proyectiles (trabajos confirmados posteriormente por los estudios acerca de la caída de los cuerpos realizados por Galileo), así como por la expresión matemática para el cálculo del volumen de un tetraedro cualquiera en función de las longitudes de sus lados, la llamada fórmula de Tartaglia, una generalización de la fórmula de Herón (usada para el cálculo del área del triángulo):

 V^2 = \frac{1}{288} \det \begin{bmatrix} 
  0 & d_{12}^2 & d_{13}^2 & d_{14}^2 & 1 \\
d_{21}^2 & 0   & d_{23}^2 & d_{24}^2 & 1 \\
d_{31}^2 & d_{32}^2 & 0   & d_{34}^2 & 1 \\
d_{41}^2 & d_{42}^2 & d_{43}^2 &   0 & 1 \\
  1 &   1 &   1 &   1 & 0
\end{bmatrix}  

 

Además de sus trabajos matemáticos, Tartaglia publicó las primeras traducciones al italiano de las obras de Arquímedes y Euclides.

 

       Obras:


  • Trattato di numeri et misure.
  • Nuova Scientia, cioè invenzione nuovamente trovata utile per ciascuno speculativo matematico bombardero et altri (1546).
  • Questi et invenzioni diverse.
  • La travagliata invenzione.
  • Trattato di aritmética.

Utilizado en la ESO

En primero y segundo de la Eso realizamos trabajos y ejercicios calculando el área del triángulo, el cual descubrió Tartaglia.
También en física realizamos operaciones en tercero y cuarto de la ESO relacionadas con la trayectoria de los proyectiles.

No hay comentarios:

Publicar un comentario