Powered By Blogger

lunes, 23 de febrero de 2015


Johannes Kepler

Vida

(Würtemburg, actual Alemania, 1571-Ratisbona, id., 1630) Astrónomo, matemático y físico alemán. Hijo de un mercenario -que sirvió por dinero en las huestes del duque de Alba y desapareció en el exilio en 1589- y de una madre sospechosa de practicar la brujería, Johannes Kepler superó las secuelas de una infancia desgraciada y sórdida merced a su tenacidad e inteligencia.
Tras estudiar en los seminarios de Adelberg y Maulbronn, Kepler ingresó en la Universidad de Tubinga (1588), donde cursó los estudios de teología y fue también discípulo del copernicano Michael Mästlin. En 1594, sin embargo, interrumpió su carrera teológica al aceptar una plaza como profesor de matemáticas en el seminario protestante de Graz.

Cuatro años más tarde, unos meses después de contraer un matrimonio de conveniencia, el edicto del archiduque Fernando contra los maestros protestantes le obligó a abandonar Austria y en 1600 se trasladó a Praga invitado por Tycho Brahe. Cuando éste murió repentinamente al año siguiente, Kepler lo sustituyó como matemático imperial de Rodolfo II, con el encargo de acabar las tablas astronómicas iniciadas por Brahe y en calidad de consejero astrológico, función a la que recurrió con frecuencia para ganarse la vida.
En 1611 fallecieron su esposa y uno de sus tres hijos; poco tiempo después, tras el óbito del emperador y la subida al trono de su hermano Matías, fue nombrado profesor de matemáticas en Linz. Allí residió Kepler hasta que, en 1626, las dificultades económicas y el clima de inestabilidad originado por la guerra de los Treinta Años lo llevaron a Ulm, donde supervisó la impresión de las Tablas rudolfinas, iniciadas por Brahe y completadas en 1624 por él mismo utilizando las leyes relativas a los movimientos planetarios que aquél estableció.
En 1628 pasó al servicio de A. von Wallenstein, en Sagan (Silesia), quien le prometió, en vano, resarcirle de la deuda contraída con él por la Corona a lo largo de los años. Un mes antes de morir, víctima de la fiebre, Kepler había abandonado Silesia en busca de un nuevo empleo. 

Obras

La primera etapa en la obra de Kepler, desarrollada durante sus años en Graz, se centró en los problemas relacionados con las órbitas planetarias, así como en las velocidades variables con que los planetas las recorren, para lo que partió de la concepción pitagórica según la cual el mundo se rige en base a una armonía preestablecida. Tras intentar una solución aritmética de la cuestión, creyó encontrar una respuesta geométrica relacionando los intervalos entre las órbitas de los seis planetas entonces conocidos con los cinco sólidos regulares. Juzgó haber resuelto así un «misterio cosmográfico» que expuso en su primera obra, Mysterium cosmographicum (El misterio cosmográfico, 1596), de la que envió un ejemplar a Brahe y otro a Galileo, con el cual mantuvo una esporádica relación epistolar y a quien se unió en la defensa de la causa copernicana.
Durante el tiempo que permaneció en Praga, Kepler realizó una notable labor en el campo de la óptica: enunció una primera aproximación satisfactoria de la ley de la refracción, distinguió por vez primera claramente entre los problemas físicos de la visión y sus aspectos fisiológicos, y analizó el aspecto geométrico de diversos sistemas ópticos.
Pero el trabajo más importante de Kepler fue la revisión de los esquemas cosmológicos conocidos a partir de la gran cantidad de observaciones acumuladas por Brahe (en especial, las relativas a Marte), labor que desembocó en la publicación, en 1609, de la Astronomia nova (Nueva astronomía), la obra que contenía las dos primeras leyes llamadas de Kepler, relativas a la elipticidad de las órbitas y a la igualdad de las áreas barridas, en tiempos iguales, por los radios vectores que unen los planetas con el Sol.
Culminó su obra durante su estancia en Linz, en donde enunció la tercera de sus leyes, que relaciona numéricamente los períodos de revolución de los planetas con sus distancias medias al Sol; la publicó en 1619 en Harmonices mundi (Sobre la armonía del mundo), como una más de las armonías de la naturaleza, cuyo secreto creyó haber conseguido desvelar merced a una peculiar síntesis entre la astronomía, la música y la geometría.

Tabajado en la ESO

Es desarrollado sobre todo en 4º de la ESO, cuando en Física y Química aprendemos las leyes de Kepler.





PIERRE DE FERMAT

Vida

(Beaumont, Francia, 1601 - Castres, id., 1665) Matemático francés. Continuador de la obra de Diofanto en el campo de los números enteros y cofundador del estudio matemático de la probabilidad, junto con Pascal, y de la geometría analítica, junto con Descartes, Pierre de Fermat mantuvo correspondencia con los grandes científicos de su época y gozó ya en vida de gran estima e inmensa reputación, si bien su natural modestia y su modo de trabajar, en exceso diletante, perjudicó la divulgación de sus aportaciones. 

 La existencia de este ilustre matemático fue ciertamente sencilla y prosaica, y se conoce poco de sus primeros años. Hijo de Dominique Fermat, burgués y segundo cónsul de Beaumont, estudió leyes en Toulouse y quizá en Burdeos para poder aspirar al ejercicio de la magistratura; llegado, en efecto, a consejero del Parlamento de la ciudad de Toulouse, fue progresando allí en su labor lenta y tranquilamente, distinguiéndose por su probidad, su tacto y sus corteses maneras. 

Interesado por las matemáticas, consagró a ellas su tiempo de ocio, y hacia 1637 figuraba entre los principales cultivadores europeos de esta ciencia. Hizo amistad con el matemático Carcavi, quien le relacionó con el padre Marin Mersenne, amigo de todos los doctos franceses de la época. El padre Mersenne le puso en contacto con Roberval y con el gran René Descartes (1637). 


El trato con el difícil e inquieto genio de Descartes no resultaba fácil para nadie, ni tampoco lo fue para Pierre de Fermat, a pesar de su discreción: ambos discutieron sobre cuestiones científicas (la infracción de la luz y el método de los máximos y mínimos). Fueron necesarias la mediación de Roberval y toda la prudencia de Fermat para mantener por lo menos fríamente correctas las relaciones personales entre los dos sabios. Muy viva, en cambio, fue la amistad entre Fermat y otro gran matemático de la época, Blaise Pascal; ambos se conocieron también gracias a Carcavi. 

De talante modesto, Pierre de Fermat sólo llego a dar a la imprenta su monografía Dissertatio geometrica de linearum curvarum comparatione, e hizo públicos algunos de sus mayores descubrimientos sólo por medio de breves comunicaciones verbales y epistolares. Ello bastó para darlo a conocer como uno de los grandes matemáticos del momento, pero sus deberes profesionales y su particular forma de trabajar redujeron en gran medida el impacto de su obra, extremadamente prolífica. Tenía por ejemplo la costumbre de anotar, en los márgenes de los libros que leía, sus ideas y sus descubrimientos, desgraciadamente sin sus demostraciones, por falta de espacio. Superando no pocas dificultades, sus escritos fueron publicados póstumamente por su hijo Samuel en 1679, en un volumen titulado Varia opera matemática D. Petri de Fermat: Senatoris Tolosani.


 Obra

Las primeras aportaciones de Pierre de Fermat datan de 1629, cuando abordó la tarea de reconstruir algunas de las demostraciones perdidas del matemático griego Apolonio de Perga relativas a los lugares geométricos; a tal efecto desarrollaría, contemporánea e independientemente de René Descartes, un método algebraico para tratar cuestiones de geometría por medio de un sistema de coordenadas, de capital importancia para la constitución de la geometría analítica. Sirviéndose de los símbolos de François Viète, trató ampliamente la ecuación de la recta, y las de la hipérbola, la parábola y la circunferencia.
Fermat se sitúa asimismo entre los matemáticos que dieron el primer impulso al cálculo infinitesimal, y fue el primero en estudiar las cuestiones de máximo y mínimo (desde 1636) con el método que hoy llamamos de las "derivadas", aprovechando una genial intuición que se presenta por primera vez en la obra del prelado francés Nicolás de Oresme. Diseñó un algoritmo de diferenciación mediante el cual pudo determinar los valores máximos y mínimos de una curva polinómica y trazar las correspondientes tangentes, logros todos ellos que abrieron el camino al desarrollo ulterior del cálculo infinitesimal por Newton y Leibniz.
En el ámbito de la óptica geométrica, tras asumir correctamente que cuando la luz se desplaza en un medio más denso su velocidad disminuye, demostró que el camino de un rayo luminoso entre dos puntos es siempre aquel que menos tiempo le cuesta recorrer; de dicho principio, denominado principio de Fermat, se deducen las leyes de la reflexión y la refracción. En 1654, y como resultado de una larga correspondencia, desarrolló con Blaise Pascal los principios de la teoría de la probabilidad.


Otro campo en el que realizó originales aportaciones fue el de la teoría de números, en la que empezó a interesarse tras consultar una edición de la Aritmética de Diofanto; precisamente en el margen de una página de dicha edición fue donde anotó el que sería llamado Último teorema de Fermat, que tardaría más de tres siglos en demostrarse. Puede decirse que el estudio metódico de las propiedades de los números enteros comienza realmente con Fermat, razón por la que ha sido considerado el verdadero creador de la teoría de los números, a la cual matemáticos antiguos como Pitágoras, Euclides y Diofanto habían dado apenas comienzo.
De su trabajo en dicho campo se derivaron importantes resultados relacionados con las propiedades de los números primos, muchas de las cuales quedaron expresadas en forma de simples proposiciones y teoremas. Desagraciadamente, todo lo que llegado hasta nosotros está contenido casi exclusivamente en los estrechos márgenes de un ejemplar de Diofanto y en algunos fragmentos de su correspondencia. Fermat desarrolló también un ingenioso método de demostración que denominó «del descenso infinito». 

Trabajado en la ESO

Lo hemos estudiado a partir del final de 1º de la ESO, en 2º, 3º y 4º, este año.


El Último Teorema de Fermat



A pesar de tantas y tan valiosas aportaciones, el nombre del insigne matemático francés se halla con frecuencia asociado a uno de los más fascinantes enigmas de la historia de las matemáticas. Cuando preparaba la edición de las obras completas de su padre, Samuel de Fermat encontró una singular anotación en una de las páginas de la Aritmética de Diofanto.
En ella, Fermat afirmaba que la ecuación xn+yn=zn no tiene solución entera positiva si el valor del exponente n es superior a 2. Dicho de otro modo: la suma de dos cuadrados puede equivaler a un tercer cuadrado, como ocurre en la igualdad 32+42=52, pero es imposible hallar una igualdad semejante entre números enteros positivos elevados al cubo, a la cuarta potencia, a la quinta potencia, etc.
En la misma nota, Fermat decía haber hallado una demostración maravillosa de este hecho, pero demasiado larga para ser consignada en el margen de un libro. Durante los tres siglos que siguieron a la publicación se sucedieron sin descanso los intentos de demostrar este teorema de Fermat, tan difícil de probar que en ciertos momentos pasó a llamarse hipótesis de Fermat. Los nombres de Leonhard Euler, Sophie Germain, Peter Gustav Lejeune Dirichlet, Gabriel Lamé, Augustin-Louis Cauchy o Ernst Eduard Kummer dan una idea del número de grandes matemáticos que no pudieron resistir la tentación de probar suerte.
En 1908, la impaciencia por encontrar solución a un misterio que cumplía ya 250 años llevó a Paul Wolfskehl (un industrial alemán que se salvó del suicidio merced al interés despertado en él por un artículo de Kummer acerca del teorema de Fermat) a dejar en su testamento un premio de cien mil marcos para quien supiera hallarle una demostración antes de cien años. Se dice que sólo durante los cuatro años siguientes a su fallecimiento se publicaron más de mil pruebas falsas.









lunes, 2 de febrero de 2015

VIÉTE

Vida

 François Viète (1540-1603) nació en Fontenay-le-Comte (Francia). Su padre fue fiscal. 

Estudió en el colegio de su ciudad natal y se licenció como jurista tras acabar sus estudios de derecho en Poitiers en 1560. Cuatro años más tarde entró al servicio de la casa de Soubise, abandonando la abogacía, como redactor y biógrafo, ocupándose, además, de la educación de la hija del señor. 

En 1571 entró como abogado en el Parlamento de París y en 1573 como consejero en el de Rennes. En 1576 el rey Enrique III le encargó misiones especiales, entre otras la de descifrar los mensajes secretos que enviaba el rey de España a su ejército en Flandes. Estas ocupaciones oficiales se prolongaron hasta 1584, que se suspendieron hasta 1589, periodo que dedicó fundamentalmente para reflexionar sobre sus descubrimientos matemáticos. 


Por sus contribuciones al álgebra, la trigonometría, la aritmética y la astronomía, es considerado como la figura dominante y central del Renacimiento europeo.
Se casó con Juliette Leclère, de la que tuvo una hija sin descendencia, y murió en París a los 63 años.



Obras

En el periodo que va de 1564 a 1568 escribió dos obras, una de astronomía titulada Harmonicon coeleste que no llegó a publicarse y su gran Canon mathematicus seu ad triangula, cuya impresión duró más de ocho años y se publicó en 1579. Las aportaciones de esta obra fueron, entre otras, la utilización sistemática de los números decimales, con empleo de la coma; la aplicación sistemática del álgebra a la trigonometría descubriendo de nuevo la mayor parte de las identidades elementales con fórmulas generales para las expresiones de las funciones; la obtención de fórmulas trigonométricas de conversión del producto de funciones en una suma o una diferencia, o la obtención de lo que hoy se conoce como teorema del coseno.

En su obra Variorum de rebus mathematicis, de 1593, formuló un enunciado equivalente al teorema de la tangente.

Pero su fama le vendría por su contribución al álgebra, con su obra In artem analyticam isagoge, que se publicó por primera vez en Tours en 1591. Sirvió para la generalización del álgebra simbólica, muy parecida a la que después Descartes culminó. Viète utilizaba las vocales para identificar a las incógnitas y las consonantes para nombrar los parámetros conocidos (al contrario que ahora), pero aún utilizaba abreviaturas para identificar operaciones. Así, por ejemplo, para nombrar la ecuación 2ax² + 3bx - x³ = D hacía lo siguiente: la x la nombraba A; los parámetros a y b los nombraba B y F; al D lo llamaba solido; a la operación de multiplicar, in; el cuadrado, q (de quadratus); el cubo era c (de cubus), y la igualdad era aequatur. Escribía:
B 2 in A q + F 3 in A - A c aequatur D solido

Tras su muerte, en 1615, se publicó su obra De aequationum recognitione et emendatione, con estudios precisos sobre las raíces de las ecuaciones polinómicas.
Con Viète alcanzó el álgebra un grado de generalización notable y dio nuevos enfoques a la resolución de todo tipo de ecuaciones.


Utilizado en la ESO

  El álgebra lo comenzamos a estudiar, generalmente, en 1º de la ESO y seguido de 2º y 3º, seguimos dándola en 4º de la ESO.